4753 (C3) Methods for Advanced Mathematics

Section A

	M1 B1 A1 A1 [4]	chain rule used $\frac{1}{3} u^{-2 / 3}$ $\times 12 x$ cao (must resolve $1 / 3 \times 12$) Mark final answer
$\begin{aligned} 2 \text { (i) } \mathrm{fg}(x) & =\mathrm{f}(x-2) \\ & =(x-2)^{2} \\ \mathrm{gf}(x) & =\mathrm{g}\left(x^{2}\right)=x^{2}-2 . \end{aligned}$	M1 A1 A1 [3]	forming a composite function mark final answer If $f g$ and $g f$ the wrong way round, M1A0A0
(ii)	B1ft B1ft [2]	fg - must have (2, 0)labelled (or inferable from scale). Condone no y-intercept, unless wrong gf - must have $(0,-2)$ labelled (or inferable from scale) Condone no x-intercepts, unless wrong Allow ft only if fg and gf are correct but wrong way round.
$\begin{array}{ll} 3 \text { (i) } \quad \text { When } n=1,10000=A \mathrm{e}^{b} \\ & \text { when } n=22,16000=A \mathrm{e}^{2 b} \\ \Rightarrow & \frac{16000}{10000}=\frac{A e^{2 b}}{A e^{b}}=e^{b} \\ \Rightarrow \quad & \mathrm{e}^{b}=1.6 \\ \Rightarrow \quad & b=\ln 1.6=0.470 \\ & A=10000 / 1.6=6250 . \end{array}$	B1 B1 M1 E1 B1 B1 [6]	soi soi eliminating A (do not allow verification) SCB2 if initial 'B's are missing, and ratio of years $=1.6$ $=e^{b}$ In 1.6 or 0.47 or better (mark final answer) cao - allow recovery from inexact b's
(ii) When $\begin{aligned} n=20, P & =6250 \times \times^{0.470 \times 20} \\ & =£ 75,550,000 \end{aligned}$	M1 A1 [2]	substituting $n=20$ into their equation with their A and b Allow answers from $£ 75000000$ to $£ 76000000$.
4 (i) $5=k / 100 \Rightarrow k=500^{*}$	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	NB answer given
(ii) $\frac{d P}{d V}=-500 V^{-2}=-\frac{500}{V^{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	$\begin{aligned} & (-1) V^{-2} \\ & \text { o.e. }- \text { allow }-k / V^{2} \end{aligned}$
$\text { (iii) } \frac{d P}{d t}=\frac{d P}{d V} \cdot \frac{d V}{d t}$ $\begin{aligned} & \text { When } V=100, \mathrm{~d} P / d V=-500 / 10000= \\ & -0.05 \\ & \Rightarrow \quad \mathrm{~d} V / \mathrm{d} t=10 \\ & \Rightarrow \quad \mathrm{~d} P / \mathrm{d} t=-0.05 \times 10=-0.5 \end{aligned}$ So P is decreasing at $0.5 \mathrm{Atm} / \mathrm{s}$	M1 B1ft B1 A1 [4]	chain rule (any correct version) (soi) (soi) - 0.5 cao

$\text { 5(i) } \begin{aligned} & p=2,2^{p}-1=3, \text { prime } \\ p & =3,2^{p}-1=7, \text { prime } \\ p & =5,2^{p}-1=31, \text { prime } \\ p & =7,2^{p}-1=127, \text { prime } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \text { [2] } \end{aligned}$	Testing at least one prime testing all 4 primes (correctly) Must comment on answers being prime (allow ticks) Testing $p=1$ is E0
(ii) $23 \times 89=2047=2^{11}-1$ 11 is prime, 2047 is not So statement is false.	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \text { [2] } \end{aligned}$	$2^{11}-1$ must state or imply that 11 is prime ($p=11$ is sufficient)
$\begin{array}{ll} 6 \text { (i) } & \mathrm{e}^{2 y}=x^{2}+y \\ \Rightarrow & 2 e^{2 y} \frac{d y}{d x}=2 x+\frac{d y}{d x} \\ \Rightarrow & \left(2 e^{2 y}-1\right) \frac{d y}{d x}=2 x \\ \Rightarrow & \frac{d y}{d x}=\frac{2 x}{2 e^{2 y}-1} * \end{array}$	M1 A1 M1 E1 [4]	Implicit differentiation - allow one slip (but with dy/dx both sides) collecting terms
(ii) Gradient is infinite when $2 \mathrm{e}^{2 y}-1=$ 0 $\begin{array}{cl} \Rightarrow & \mathrm{e}^{2 y}=1 / 2 \\ \Rightarrow & 2 y=\ln 1 / 2 \\ \Rightarrow & y=1 / 2 \ln 1 / 2=-0.347 \text { (3 s.f.) } \\ & x^{2}=\mathrm{e}^{2 y}-y=1 / 2-(-0.347) \\ \Rightarrow & x=0.920 \end{array}$	M1 A1 M1 A1 [4]	must be to 3 s.f. substituting their y and solving for x cao - must be to 3 s.f., but penalise accuracy once only.

Section B

$\begin{array}{ll} 7(i) & y=2 x \ln (1+x) \\ \Rightarrow & \frac{d y}{d x}=\frac{2 x}{1+x}+2 \ln (1+x) \end{array}$ When $x=0, \mathrm{~d} y / \mathrm{d} x=0+2 \ln 1=0$ \Rightarrow origin is a stationary point.	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { E1 } \\ & {[4]} \end{aligned}$	product rule $\mathrm{d} / \mathrm{d} x(\ln (1+x))=1 /(1+x)$ soi www (i.e. from correct derivative)
$\text { (ii) } \begin{aligned} \frac{d^{2} y}{d x^{2}} & =\frac{(1+x) \cdot 2-2 x \cdot 1}{(1+x)^{2}}+\frac{2}{1+x} \\ & =\frac{2}{(1+x)^{2}}+\frac{2}{1+x} \end{aligned}$ When $x=0, \mathrm{~d}^{2} y / \mathrm{d} x^{2}=2+2=4>0$ $\Rightarrow \quad(0,0)$ is a min point	M1 A1ft A1 M1 E1 [5]	Quotient or product rule on their $2 x /(1+x)$ correctly applied to their $2 x /(1+x)$ o.e., e.g. $\frac{4+2 x}{(1+x)^{2}}$ cao substituting $x=0$ into their $\mathrm{d}^{2} y / \mathrm{d}^{2}$ www - dep previous A1
$\begin{aligned} & \text { (iii) } \quad \begin{aligned} \text { Let } u=1 & +x \Rightarrow \mathrm{~d} u=\mathrm{d} x \\ \Rightarrow \quad \int \frac{x^{2}}{1+x} d x & =\int \frac{(u-1)^{2}}{u} d u \\ & =\int \frac{\left(u^{2}-2 u+1\right)}{u} d u \\ & =\int\left(u-2+\frac{1}{u}\right) d u * \\ \Rightarrow \quad \int_{0}^{1} \frac{x^{2}}{1+x} d x & =\int_{1}^{2}\left(u-2+\frac{1}{u}\right) d u \\ & =\left[\frac{1}{2} u^{2}-2 u+\ln u\right]_{1}^{2} \\ & =2-4+\ln 2-(1 / 2-2+\ln 1) \\ & =\ln 2-1 / 2 \end{aligned} \end{aligned}$	M1 E1 B1 B1 M1 A1 [6]	$\frac{(u-1)^{2}}{u}$ www (but condone du omitted except in final answer) changing limits (or substituting back for x and using 0 and 1) $\left[\frac{1}{2} u^{2}-2 u+\ln u\right]$ substituting limits (consistent with u or x) cao
(iv) $A=\int_{0}^{1} 2 x \ln (1+x) d x$ $\begin{aligned} & \text { Parts: } u=\ln (1+x), \mathrm{d} u / \mathrm{d} x=1 /(1+x) \\ & \mathrm{d} v / \mathrm{d} x=2 x \Rightarrow v=x^{2} \\ &=\left[x^{2} \ln (1+x)\right]_{0}^{1}-\int_{0}^{1} \frac{x^{2}}{1+x} d x \\ &=\ln 2-\ln 2+1 / 2=1 / 2 \end{aligned}$	M1 A1 M1 A1 [4]	soi substituting their $\ln 2-1 / 2$ for $\int_{0}^{1} \frac{x^{2}}{1+x} d x$ cao

$8 \text { (i) }$	Stretch in x-direction s.f. $1 / 2$ translation in y-direction 1 unit up	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	(in either order) - allow 'contraction' dep 'stretch' allow 'move', 'shift', etc - direction can be inferred from $\binom{0}{1}$ or $\binom{0}{1}$ dep 'translation'. $\binom{0}{1}$ alone is M1 A0
(ii)	$\begin{aligned} & A=\int_{-\pi / 4}^{\pi / 4}(1+\sin 2 x) d x \\ & =\left[x-\frac{1}{2} \cos 2 x\right]_{-\pi / 4}^{\pi / 4} \\ & =\pi / 4-1 / 2 \cos \pi / 2+\pi / 4+1 / 2 \cos (-\pi / 2) \\ & =\pi / 2 \end{aligned}$	M1 B1 M1 A1 [4]	correct integral and limits. Condone $\mathrm{d} x$ missing; limits may be implied from subsequent working. substituting their limits (if zero lower limit used, must show evidence of substitution) or 1.57 or better - cao (www)
$\begin{gathered} \quad \begin{array}{c} \text { (iii) } \\ \Rightarrow \\ \Rightarrow \end{array}, ~ \end{gathered}$	$\begin{aligned} & y=1+\sin 2 x \\ & \mathrm{~d} y / \mathrm{d} x=2 \cos 2 x \end{aligned}$ When $x=0, \mathrm{~d} y / \mathrm{d} x=2$ So gradient at $(0,1)$ on $f(x)$ is 2 gradient at $(1,0)$ on $\mathrm{f}^{-1}(x)=1 / 2$	M1 A1 A1ft B1ft [4]	differentiating - allow 1 error (but not $x+2 \cos 2 x$) If 1 , then must show evidence of using reciprocal, e.g. $1 / 1$
(iv)	Domain is $0 \leq x \leq 2$.	B1 M1 A1 [3]	Allow 0 to 2, but not $0<x<2$ or y instead of x clear attempt to reflect in $y=x$ correct domain indicated (0 to 2), and reasonable shape
(v) $\begin{aligned} & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \end{aligned}$	$\begin{aligned} & y=1+\sin 2 x \quad x \leftrightarrow y \\ & x=1+\sin 2 y \\ & \sin 2 y=x-1 \\ & 2 y=\arcsin (x-1) \\ & y=1 / 2 \arcsin (x-1) \end{aligned}$	M1 A1 [2]	$\text { or } \sin 2 x=y-1$ cao

