January 2008

4753 (C3) Methods for Advanced Mathematics

Section A

1 $y = (1+6x^2)^{1/3}$ $\Rightarrow \frac{dy}{dx} = \frac{1}{3}(1+6x^2)^{-2/3}.12x$	M1 B1	chain rule used $\frac{1}{3}u^{-2/3}$
$=4x(1+6x^2)^{-2/3}$	A1 A1 [4]	$\times 12x$ cao (must resolve 1/3 \times 12) Mark final answer
2 (i) $fg(x) = f(x-2)$ = $(x-2)^2$ $gf(x) = g(x^2) = x^2 - 2.$	M1 A1 A1 [3]	forming a composite function mark final answer If fg and gf the wrong way round, M1A0A0
(ii) , fg(x)	B1ft B1ft	fg – must have (2, 0)labelled (or inferable from scale). Condone no <i>y</i> -intercept, unless wrong gf - must have (0, -2) labelled (or inferable from scale)
-2 gf(x)	[2]	Condone no x-intercepts, unless wrong Allow ft only if fg and gf are correct but wrong way round.
3 (i) When $n = 1$, 10 000 = $A e^{b}$ when $n = 2$, 16 000 = $A e^{2b}$ $\Rightarrow \frac{16000}{10000} = \frac{Ae^{2b}}{Ae^{b}} = e^{b}$	B1 B1 M1	soi soi eliminating <i>A</i> (do not allow verification)
$\begin{array}{ll} \Rightarrow & e^{b} = 1.6\\ \Rightarrow & b = \ln 1.6 = 0.470\\ & A = 10000/1.6 = 6250. \end{array}$	E1 B1 B1 [6]	SCB2 if initial 'B's are missing, and ratio of years = 1.6 = e^{b} In 1.6 or 0.47 or better (mark final answer) cao – allow recovery from inexact <i>b</i> 's
(ii) When $n = 20$, $P = 6250 \times e^{0.470 \times 20}$ = £75,550,000	M1 A1 [2]	substituting $n = 20$ into their equation with their A and b Allow answers from £75 000 000 to £76 000 000.
4 (i) $5 = k/100 \Rightarrow k = 500^*$	E1 [1]	NB answer given
(ii) $\frac{dP}{dV} = -500V^{-2} = -\frac{500}{V^2}$	M1 A1 [2]	$(-1)V^{-2}$ o.e. – allow – k/V^2
(iii) $\frac{dP}{dt} = \frac{dP}{dV} \cdot \frac{dV}{dt}$	M1	chain rule (any correct version)
When $V = 100$, $dP/dV = -500/10000 =$ -0.05 dV/dt = 10 $\Rightarrow dP/dt = -0.05 \times 10 = -0.5$ So P is decreasing at 0.5 Atm/s	B1ft B1 A1 [4]	(soi) (soi) –0.5 cao

5(i)	$p = 2, 2^{p} - 1 = 3$, prime $p = 3, 2^{p} - 1 = 7$, prime $p = 5, 2^{p} - 1 = 31$, prime $p = 7, 2^{p} - 1 = 127$, prime	M1 E1 [2]	Testing at least one prime testing all 4 primes (correctly) Must comment on answers being prime (allow ticks) Testing $p = 1$ is E0
(ii)	$23 \times 89 = 2047 = 2^{11} - 1$ 11 is prime, 2047 is not So statement is false.	M1 E1 [2]	$2^{11} - 1$ must state or imply that 11 is prime (<i>p</i> = 11 is sufficient)
$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	$e^{2y} = x^{2} + y$ $2e^{2y} \frac{dy}{dx} = 2x + \frac{dy}{dx}$ $(2e^{2y} - 1)\frac{dy}{dx} = 2x$ $\frac{dy}{dx} = \frac{2x}{2e^{2y} - 1} *$	M1 A1 M1 E1 [4]	Implicit differentiation – allow one slip (but with dy/dx both sides) collecting terms
$egin{array}{c} 0 \ \Rightarrow \ \Rightarrow \end{array}$	Gradient is infinite when $2e^{2y} - 1 =$ $e^{2y} = \frac{1}{2}$ $2y = \ln \frac{1}{2}$ $y = \frac{1}{2} \ln \frac{1}{2} = -0.347 (3 \text{ s.f.})$ $x^2 = e^{2y} - y = \frac{1}{2} - (-0.347)$ = 0.8465 x = 0.920	M1 A1 M1 A1 [4]	must be to 3 s.f. substituting their y and solving for x cao – must be to 3 s.f., but penalise accuracy once only.

Section B

7(i) $y = 2x \ln(1 + x)$ $\Rightarrow \frac{dy}{dx} = \frac{2x}{1+x} + 2\ln(1+x)$ When $x = 0$, $dy/dx = 0 + 2 \ln 1 = 0$ \Rightarrow origin is a stationary point.	M1 B1 A1 E1 [4]	product rule d/dx(ln(1+x)) = 1/(1+x) soi www (i.e. from correct derivative)
(ii) $\frac{d^2 y}{dx^2} = \frac{(1+x) \cdot 2 - 2x \cdot 1}{(1+x)^2} + \frac{2}{1+x}$ $= \frac{2}{(1+x)^2} + \frac{2}{1+x}$ When $x = 0$, $\frac{d^2 y}{dx^2} = 2 + 2 = 4 > 0$ \Rightarrow (0, 0) is a min point	M1 A1ft A1 M1 E1 [5]	Quotient or product rule on their $2x/(1 + x)$ correctly applied to their $2x/(1+x)$ o.e., e.g. $\frac{4+2x}{(1+x)^2}$ cao substituting $x = 0$ into their d^2y/dx^2 www – dep previous A1
(iii) Let $u = 1 + x \Rightarrow du = dx$ $\Rightarrow \int \frac{x^2}{1+x} dx = \int \frac{(u-1)^2}{u} du$ $= \int \frac{(u^2 - 2u + 1)}{u} du$	M1	$\frac{(u-1)^2}{u}$
$= \int (u - 2 + \frac{1}{u}) du ^{*}$ $\Rightarrow \int_{0}^{1} \frac{x^{2}}{1 + x} dx = \int_{1}^{2} (u - 2 + \frac{1}{u}) du$ $= \left[\frac{1}{2}u^{2} - 2u + \ln u\right]_{1}^{2}$ $= 2 - 4 + \ln 2 - (\frac{1}{2}u - 2 + \ln 1)$ $= \ln 2 - \frac{1}{2}u^{2}$	E1 B1 B1 M1 A1	www (but condone du omitted except in final answer) changing limits (or substituting back for x and using 0 and 1) $\left[\frac{1}{2}u^2 - 2u + \ln u\right]$ substituting limits (consistent with u or x) cao
(iv) $A = \int_{0}^{1} 2x \ln(1+x) dx$	[6]	
Parts: $u = \ln(1 + x)$, $du/dx = 1/(1 + x)$ $dv/dx = 2x \Rightarrow v = x^2$ $= \left[x^2 \ln(1 + x)\right]_0^1 - \int_0^1 \frac{x^2}{1 + x} dx$ $= \ln 2 - \ln 2 + \frac{1}{2} = \frac{1}{2}$	M1 A1 M1 A1 [4]	soi substituting their $\ln 2 - \frac{1}{2}$ for $\int_0^1 \frac{x^2}{1+x} dx$ cao

Mark Scheme

8 (i) Stretch in x-direction s.f. ¹ / ₂ translation in y-direction 1 unit up	M1 A1 M1 A1 [4]	(in either order) – allow 'contraction' dep 'stretch' allow 'move', 'shift', etc – direction can be inferred from $\begin{pmatrix} 0\\1 \end{pmatrix}$ or $\begin{pmatrix} 0\\1 \end{pmatrix}$ dep 'translation'. $\begin{pmatrix} 0\\1 \end{pmatrix}$ alone is M1 A0
(ii) $A = \int_{-\pi/4}^{\pi/4} (1 + \sin 2x) dx$ $= \left[x - \frac{1}{2} \cos 2x \right]_{-\pi/4}^{\pi/4}$ $= \pi/4 - \frac{1}{2} \cos \frac{\pi}{2} + \frac{\pi}{4} + \frac{1}{2} \cos \frac{(-\pi/2)}{2}$ $= \pi/2$	M1 B1 M1 A1 [4]	correct integral and limits. Condone dx missing; limits may be implied from subsequent working. substituting their limits (if zero lower limit used, must show evidence of substitution) or 1.57 or better – cao (www)
(iii) $y = 1 + \sin 2x$ $\Rightarrow dy/dx = 2\cos 2x$ When $x = 0$, $dy/dx = 2$ So gradient at (0, 1) on f(x) is 2 \Rightarrow gradient at (1, 0) on f ⁻¹ (x) = $\frac{1}{2}$	M1 A1 A1ft B1ft [4]	differentiating – allow 1 error (but not $x + 2\cos 2x$) If 1, then must show evidence of using reciprocal, e.g. 1/1
(iv) Domain is $0 \le x \le 2$. y 2^{4} $-\pi/4$ 0 $\pi/4$ 2 x	B1 M1 A1 [3]	Allow 0 to 2, but not $0 < x < 2$ or y instead of x clear attempt to reflect in $y = x$ correct domain indicated (0 to 2), and reasonable shape
(v) $y = 1 + \sin 2x \ x \leftrightarrow y$ $x = 1 + \sin 2y$ $\Rightarrow \sin 2y = x - 1$ $\Rightarrow 2y = \arcsin(x - 1)$ $\Rightarrow y = \frac{1}{2} \arcsin(x - 1)$	M1 A1 [2]	or $\sin 2x = y - 1$ cao